skip to main content


Search for: All records

Creators/Authors contains: "Cheung, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 14, 2024
  2. Vulnerability of marine species to climate change (including ocean acidification, deoxygenation, and associated changes in food supply) depends on species’ ecological and biological characteristics. Most existing assessments focus on coastal species but systematic analysis of climate vulnerability for the deep sea is lacking. Here, we combine a fuzzy logic expert system with species biogeographical data to assess the risks of climate impacts to the population viability of 32 species of exploited demersal deep-sea species across the global ocean. Climatic hazards are projected to emerge from historical variabilities in all the recorded habitats of the studied species by the mid-twenty-first century. Species that are both at very high risk of climate impacts and highly vulnerable to fishing include Antarctic toothfish (Dissostichus mawsoni), rose fish (Sebastes norvegicus), roughhead grenadier (Macrourus berglax), Baird’s slickhead (Alepocephalus bairdii), cusk (Brosme brosme), and Portuguese dogfish (Centroscymnus coelepis). Most exploited deep-sea fishes are likely to be at higher risk of local, or even global, extinction than previously assessed because of their high vulnerability to both climate change and fishing. Spatially, a high concentration of deep-sea species that are climate vulnerable is predicted in the northern Atlantic Ocean and the Indo-Pacific region. Aligning carbon mitigation with improved fisheries management offers opportunities for overall risk reduction in the coming decades. Regional fisheries management organizations (RFMOs) have an obligation to incorporate climate change in their deliberations. In addition, deep-sea areas that are not currently managed by RFMOs should be included in existing or new international governance institutions or arrangements. 
    more » « less
  3. Abstract Transformative governance is key to addressing the global environmental crisis. We explore how transformative governance of complex biodiversity–climate–society interactions can be achieved, drawing on the first joint report between the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to reflect on the current opportunities, barriers, and challenges for transformative governance. We identify principles for transformative governance under a biodiversity–climate–society nexus frame using four case studies: forest ecosystems, marine ecosystems, urban environments, and the Arctic. The principles are focused on creating conditions to build multifunctional interventions, integration, and innovation across scales; coalitions of support; equitable approaches; and positive social tipping dynamics. We posit that building on such transformative governance principles is not only possible but essential to effectively keep climate change within the desired 1.5 degrees Celsius global mean temperature increase, halt the ongoing accelerated decline of global biodiversity, and promote human well-being. 
    more » « less
  4. Abstract The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability. 
    more » « less
  5. null (Ed.)
  6. Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets. 
    more » « less
  7. null (Ed.)
  8. Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them. 
    more » « less